

Topic 5.2.1 – PIC microcontrollers

1

Learning Objectives:

At the end of this topic you will be able to;

 recall the architecture of a PIC microcontroller, consisting of CPU,
clock, data memory, program memory and input/output ports,
connected by buses;

 explain, and give examples of, the use of interrupts to allow an
external device to be serviced on request;

 draw a circuit diagram to show how an external device can be
connected to a PIC microcontroller to cause an interrupt;

 use a vector address to point to an interrupt service routine;
 write and analyse given code to configure the ports as input or output

ports, using the file registers called TRISA and TRISB;
 configure the INTCON file register to enable an external interrupt;
 recognise the need to protect the contents of the working register

when writing an interrupt service routine;
 devise and analyse code using the following instructions:

bcf, bsf, btfss, call, clrf, goto, movf, movlw, movwf, retfie;
 incorporate given subroutines into program code.

The requirements of the syllabus for this topic are precise and concise.
However, to improve understanding of programming techniques and of how
the PIC chip responds to them, the notes on this topic are extensive, and go
beyond what is examinable.

To aid revision, areas that are examinable are identified by a vertical line in
the left margin. Where there is no vertical line, the notes are aimed only at
improving understanding.

Module ET5

Electronic Systems Applications.

2

Review of ET3

We met the PIC microcontroller in the AS coursework module ET3, as an
example of a control system that uses a low-level programming language. Here
is a reminder of some of that work, with additional background information.

Programs and instructions

A microprocessor processes digital data, following a sequence of instructions
given in a program. The program is an instruction/data sandwich. The basic
structure is:

Instruction – do ‘this’ with the following data
Data

Instruction – now do ‘this’ with the next item of data
Data

and so on...

The microprocessor is designed to process data in the form of binary
numbers. It ‘understands’ a limited number of instructions, which it
recognises because each is given a unique binary number.

The same idea can be used in some restaurants to order a meal:
“I’ll have a number 45, followed by a number 19 with a number 68 to finish,
please.” This works very efficiently, because the chef has a recipe to follow
for each of the numbered items on the menu.

In the same, way, the programmer tells the microprocessor to carry out a
numbered instruction, such as 1010012 . The built-in instruction decoder lists
the tasks to carry out to complete this instruction. The collection of
commands which can be used with a microprocessor is known as the
instruction set, and it differs from one type of microprocessor to another,
(in the same way as the numbering of items on a menu differs from
restaurant to restaurant.)

In reality, programmers rarely write the program as a list of binary numbered
instructions and data. Instead they use a mnemonic for each instruction – a
word or abbreviation that suggests what the instruction does, for example
goto, clrf (clear file) etc.

Topic 5.2.1 – PIC microcontrollers

3

Programming languages

In the world of microprocessors, there are a number of programming
languages. Like all languages, these consist of a vocabulary (the mnemonics)
and syntax (the ‘grammar’ used to link the mnemonics and data together to
build a program of instructions.) A program will work only if the vocabulary
and syntax are totally error-free.

A complication – PIC microcontrollers are an extensive and important group
of microcontrollers, present in a wide range of devices from DVD players to
engine management systems. There are a number of ‘dialects’ of their
programming language. In particular, MPASM and TASM are common versions
used to write programs for PICs. The instruction set is the same, but the
syntax has minor differences, (rather like the versions of the English
language spoken by Americans and by British.) For the module test, you need
to be able to interpret code given in MPASM. In questions where you write
the code yourself, it does not matter whether you use MPASM or TASM.

Types of memory

The program and the data are stored in electronic memory. Items like the
instruction decoder are stored during manufacture in permanent memory,
called ROM (read-only memory.) Later, the user stores his/her program in
volatile memory, called RAM (read-and-write memory). The contents of
volatile memory are lost when the power is turned off. There is a third type
of memory, mid-way between ROM and RAM. With this type, the user can
write information into it, but the contents are retained even when the power
is turned off. There are a number of ways to implement this. The PIC chips
which we use have this type of memory, known as EEPROM (electrically
erasable programmable read-only memory.)

Module ET5

Electronic Systems Applications.

4

Ports

Microprocessors control real world devices such as motors, heaters and
lights. They monitor external conditions like temperature, speed and light
intensity. They must have the means to input data from, and output data to,
the outside world. This is done through electronic sub-systems called ports.

A subsystem which imports data from the outside world to the
microprocessor is called an input port. An output port sends data from the
microprocessor to the outside world.

Microcontrollers vs microprocessors

A microprocessor system usually consists of at least three ICs, linked by a
number of buses, (bundles of wires, usually copper tracks on a printed circuit
board.)

IC number 1: At its heart is the CPU (central processing unit) which does the
data processing. This IC also contains a number of registers, to store data
temporarily. (A register is just an electronic number store. An 8-bit register
stores an eight bit number, and so on...) The most important of these, by far,
is the Working register (known as ‘W’). Numbers loaded into the working
register can be ‘operated on’ by arithmetic and logic functions. The CPU IC
also contains the Program Counter. This keeps track of where the processor
is, within a program. The program instructions are stored in electronic
memory. The Program Counter stores the memory address of the next
instruction. When the processor reads an instruction, the Program Counter
increments, and points to the next instruction. The CPU IC also contains an
Instruction Decoder, an ALU (arithmetic and logic unit), and other
subsystems, including some ROM.

IC number 2: It communicates to the outside world via a second IC which
contains a number of ports.

IC number 3: The user program and associated data is stored in a third (and
possibly fourth or more) memory IC.

Topic 5.2.1 – PIC microcontrollers

5

16F84

RA2
RA3
RA4

MCLR
VSS

RB0/INT
RB1
RB2
RB3

RA1
RA0
OSC1/CLK IN
OSC2/CLK OUT
VDD
RB7
RB6
RB5
RB4

The operations of the CPU are timed and synchronised across these ICs by an
astable circuit called a clock. This may be found in a separate IC, or built into
the CPU.

A microcontroller requires these same components, CPU, clock, memory and
ports, but they are all housed in a single IC. It is not a replacement for a
microprocessor system; it just does a different job. It has less memory than
most microprocessor systems, and the processor usually runs more slowly.
However, as a single chip solution, it is usually smaller, cheaper and more
compact.

The PIC 16F84 microcontroller

This is one of the 18 pin PIC microcontroller
range. The pin out is shown opposite:

There are two ports.
 Port A has five bits (RA0 to RA4);
 Port B has eight bits (RB0 to RB7.)

The remaining five bits are:
 VSS and VDD, the power supply connections.
 (The IC runs on a power supply voltage between 4V and 5.5V.)
 MCLR is the master reset pin. It is active low, meaning that to reset the

microcontroller, it is necessary to pull this pin down to 0V. Usually, this
pin is connected to the positive supply rail, VDD through a resistor.

 OSC1/CLK IN and OSC2/CLK OUT are used to set up one of four
oscillator modes to provide clock pulses for the microcontroller.

Pin 6 will be of particular interest to us later. As well as serving as the least
significant bit of PORT B, it can also be used to trigger an external hardware
interrupt. We will look at this in more detail later in these notes.

Module ET5

Electronic Systems Applications.

6

Memory Organisation

In the PIC microcontroller, program instructions and data are stored in
separate areas of memory.

Program instructions

 These are stored in Flash memory (in the PIC16F84). This allows the chip
to be re-programmed, (given a different set of instructions to carry out,)
and means that the program is not lost when power is removed from the
PIC chip. Flash is a form of EEPROM.

 The 16F84 Flash memory has 1024 locations, addressed as 000h to 3FFh.
 (The ‘h’ indicates that the number is hexadecimal, or base 16. In decimal,

3FFh = (3 x 162) + (15 x 161) + (15 x 160) = 768 + 180 + 15 = 1023.So, in
decimal, the memory locations start at location number 0 and run up to
location number 1023, giving 1024 locations.)

 Location 000h is reserved for the Reset vector address. A vector
address is one that contains a pointer to another address. Whenever a
reset happens, on power-up, for example, the processor automatically
reads the instruction stored in the Reset vector address location. Usually,
this instruction sends the processor to the start address of the program.

 Location 004h is reserved for the interrupt vector address. Whenever an
interrupt happens, the processor automatically reads the instruction
stored in this location. Usually, this instruction sends the processor to
the start address of the interrupt service routine, a separate little
program which reacts to whatever caused the interrupt. (We will look at
interrupts in more detail later.)

Topic 5.2.1 – PIC microcontrollers

7

Data

 This is stored in RAM or in EEPROM memory.
 The EEPROM area is used to store ‘permanent’ data, and is not readily

accessible;
 The data stored in RAM is lost whenever power is removed from the

PIC chip. It is split into two sections, Special Function Registers
(SFRs) and General Purpose Registers (GPRs). In the PIC 16F84, the
SFRs occupy memory locations from 00h to 0Bh. The GPRs start at
address 0Ch. This can be seen in the diagram on the next page.

 In an application such as a combination lock, it would be better to store
the correct combination in the EEPROM area, rather than in a GPR so
that it is not lost if power is removed.

 The SFRs are further divided into two areas of memory, called ‘banks’,
Bank 0 and Bank1. The registers in Bank1 tend to be those that control the
flow of data to and from the corresponding SFR in Bank 0. Although these
have different addresses, there is a strong link between them. A register
with an address in Bank 0 of 0xxxxxxx, (where ‘x’ is any binary number,
either 0 or 1,) has a corresponding control register in Bank 1 with address
1xxxxxxx. For example, the SFR called PORTA is found in Bank 0 at
address 0000 01012 (=05h). It is controlled by a register called TRISA,
found in Bank 1 at address 1000 01012(=85h). Selecting a bank is done by
setting (for Bank 1) or clearing (for Bank 0) the RP0 bit of the STATUS
register, (which is, in effect, the most significant bit of the register
address.) Setting it makes it logic 1, and so addresses Bank1. Clearing RP0
makes the msb logic 0, and so addresses Bank 0. The GPRs are used by the
programmer to store information temporarily, such as count totals, lap
counts, elapsed time etc.

 The GPRs span both memory banks. A particular GPR, say that at 0Ch, will
be accessed regardless of whether Bank 0 or Bank 1 is selected. (It will be
accessed using an address of 8Ch as well as 0Ch.)

Module ET5

Electronic Systems Applications.

8

 Humans work better with names rather than numbers. A GPR can be given
a name by using the equate command, e.g.

total equ 0Ch;
 The effect of this instruction is that whenever the processor encounters

the character string ‘total’, it will replace it with the hex. number 0C.

The structure of the data area of RAM is shown in the table. Don’t worry
about the names of these registers. We go into more detail for some of them
later.

Address Bank 0 Bank 1 Address
00h INDF INDF 80h
01h TMR0 OPTION 81h
02h PCL PCL 82h
03h STATUS STATUS 83h
04h FSR FSR 84h
05h PORTA TRISA 85h
06h PORTB TRISB 86h
07h 87h
08h EEDATA EECON1 88h
09h EEADR EECON2 89h
0Ah PCLATH PCLATH 8Ah
0Bh INTCON INTCON 8Bh
0Ch GPR

registers
68 bytes

8Ch
to to

4Fh CFh

Notice that some SFRs, such as the STATUS register and INTCON register,
appear in both banks and can be accessed from either Bank 0 or Bank 1.

Topic 5.2.1 – PIC microcontrollers

9

‘Include’ file

We have just seen that an equate statement can be used to create a name
for a numbered register. However, we don’t do this for Special Function
Registers, like PORTA, TRISB and STATUS. The names of these SFRs are
equated to the corresponding file register number in the ‘include’ file for
that PIC chip, e.g. P16C84.inc. This file contains the equate statements for all
the standard register names, and is included when the program is compiled.
Parts of this file are shown below.

; P16F84.inc Standard Header File, Version 2.00 Microchip Technology Inc.
; This header file defines configurations, registers, and other useful bits of
;information for the PIC16F84 microcontroller.
;===
========
; Register Definitions
;===
========

 W equ 0h
 F equ 1h

;----- Register Files--
 STATUS equ 3h
 PORTA equ 5h
 PORTB equ 6h
 INTCON equ Bh
 OPTION_REG equ 81h
 TRISA equ 85h
 TRISB equ 86h
;----- STATUS Bits ---
 RP1 equ 6h
 RP0 equ 5h
 Z equ 2h
;----- INTCON Bits ---
 GIE equ 7h
 INTE equ 4h
 INTF equ 1h
;----- OPTION Bits ---
 INTEDG equ 6h

The contents of a typical .inc file

Module ET5

Electronic Systems Applications.

10

The lines that begin with a ‘;’ are known as remarks. The semicolon tells the
system to ignore them, as they are not instructions, but merely comments
that help humans to keep up with what is going on. Notice that the important
lines are the ones that contain the equate (equ) command. These do not start
with a semicolon!

Architecture of the PIC microcontroller

Two “normal” forms of architecture are used in modern microprocessors, Von
Neumann and Harvard architecture:

1. Von Neumann architecture –
 is the more common design, used from the Z80 right through to the

Pentium;
 stores the program instructions and any data being used in the same

address space;
 has three distinct signal pathways, called buses

 data bus – is used to carry both data and instructions between the
processor and peripheral subsystems;

 address bus - is used to identify which peripheral or storage
location is the designated source of, or destination for, the data;

 control bus - carries a variety of signals that, for example, set the
direction of the data transfer, or synchronise it;

 means that the CPU is either reading an instruction or reading/writing
data from/to the memory. Both cannot occur at the same time since the
instructions and data use the same signal pathways (data bus) and
memory space. As a result, some instructions take four or five clock
cycles to execute.

Block diagram of Von Neumann architecture

CPU
Program

and
data

memory

Clock

Port A

Port B

Topic 5.2.1 – PIC microcontrollers

11

CPU

Program
memory

Data
memory

Clock

Port A

Port B

2. Harvard Architecture –
 PIC microcontrollers use the Harvard architecture.
 Program instructions and data are stored separately, and have their own

buses;
 The CPU can read both an instruction and data from memory at the

same time, as they travel down separate routes;
 As a result, most instructions take only one clock cycle to execute;
 This design offers more efficient instruction queuing.
 Since data and instructions travel down different buses, there is no

need for them to be the same bit-width (contain the same number of
bits.). For example, often the instruction will be only six bits long, while
the data is usually eight bits long.

Block diagram of Harvard architecture

Module ET5

Electronic Systems Applications.

12

Programming concepts

1. The Instruction Set

The complete instruction set for the PIC16F84 microcontroller comprises 35
instructions. For examination purposes, you should be able to use and
interpret the subset of those instructions given in the following table:

Mnemonic Operands Description
bcf f, b Clear bit b of file f
bsf f, b Set bit b of file f
btfss f, b Test bit b of file f, skip the next instruction if the

bit is set. This is a conditional branch instruction.
call k Call subroutine k
clrf f Clear file f
goto k Unconditional branch to label k
movf f, d Move file f (to itself if d = 1, or to working register

if d = 0)
movlw k Move the literal k to the working register
movwf f Move working register to file f
retfie Return from the interrupt service routine and set

the global interrupt enable bit GIE.
Please note:

 An instruction consists of a mnemonic and an operand.

For instructions such as call, goto and movlw the operand will be a label. (A
label is simply a marker inside the program.)

 For example:
 goto restart ;branch (unconditionally) to the part of the
 ;program labelled ‘restart’.
 call second ;call the subroutine named ‘second’

 In other cases, clrf and movwf, the operand will be the name (or number)
of a file register, either a SFR or a GPR..

 For example:
movwf PORTB ;move the contents of the Working register

 ;into the file register called PORTB.
 clrf 0Fh ;write logic 0 into all bits of the file (GPR)
 ;numbered 0Fh.

Topic 5.2.1 – PIC microcontrollers

13

 Instructions such as, bcf, bsf and btfss, will require the operand to
specify both a file register name (or number) and also the specific bit of
that register that is affected.

 For example:
 bsf PORTA,0 ; set bit 0 (the lsb) of PORTA

 In the case of instructions like movf, the operand gives the name (or
number) of the file register, and the destination, (working register or file
register) for the result of the instruction.

 For example:
 movf counter,0 ;move the contents of the file called counter
 ;into the working register.
 or alternatively
 movf counter,1 ; move the contents of the file called counter
 ;into itself. Although apparently useless, this
 ;instruction will test whether the file counter
 ;contains zero. If it does, this instruction will
 ;set the Zero flag in the STATUS register.

 ;Otherwise, the Zero flag will not be set.

Exercise 1: (Solutions to exercises are given at the end of the topic.)

Observing correct syntax, write the instructions needed to:

(a) set bit 3 of PORTA;

(b) clear bit 1 of PORTB;

(c) clear the file register called testfile;

(d) move the binary number 11011 into the working register;

(e) move the contents of the working register into a file register called cost;
(f) move the contents of the file register called cost into the working

register;

(g) branch unconditionally to a point in the program identified by the label
repeat;

(h) test bit 2 of the file register called input, and skip the next instruction if
the bit is set.

Module ET5

Electronic Systems Applications.

14

2. Configuring the ports:

Data is inputted and outputted through registers, called ports. The number
of ports varies from PIC to PIC, but there are usually at least two, called
Port A and Port B.

These ports are bi-directional, meaning that they can be set up either to
input data or to output it. Control registers, called TRISA, for Port A and
TRISB for Port B, determine whether the port is an input or an output, (or a
mixture.) Writing logic 1 into a bit of TRISA causes the corresponding bit of
Port A to input data. Logic 0 makes the corresponding bit output data. TRISB
controls Port B in the same way.

The next diagram illustrates this relationship.

TRISB

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

0 0 1 1 1 1 0 0

The number 00111100 is written into TRISB

PORTB

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

Out Out In In In In Out OutThe effect is:

2

The names TRISA, TRISB, PORTA and PORTB are all defined in the ‘include’
file referred to earlier. As the diagram on page 8 shows, TRISA and TRISB
are found in Memory Bank 1, in locations that sit alongside PORTA and PORTB
in Bank 0.

Usually the ports are configured at the beginning of the program by writing
the appropriate binary numbers into the registers TRISA and TRISB. As a
rule, the ports are then left that way for the rest of the program. In other
words, the only time you use TRISA and TRISB is at the beginning of the
program. In the PIC 16F84, PORTA (and so TRISA) is a 5-bit port. PORTB
(and TRISB) is a 8-bit port.

Topic 5.2.1 – PIC microcontrollers

15

The registers TRISA and TRISB are located in an area of memory called
Bank 1. Normally, programs use the memory located in Bank 0. To move to
Bank 1, a bit, called RP0, of the STATUS register (of which more later) is set
(has logic 1 written into it.) To move back to Bank 0, that bit is cleared (has
logic 0 written into it.)

For example:
To configure bits 0 to 3 of Port B bits as input bits, and bits 4 to 7 as output
bits, use the following code:

 bsf STATUS,RP0 ;the following instructions will refer to
 ;Memory Bank1, and so affect the TRIS
 ;registers rather than the Ports themselves
 movlw b’00001111’ ;0 = output bit, 1 = input bit
 movwf TRISB ;store number 00001111 in TRISB
 bcf STATUS, RP0 ;the rest of the program will refer to
 ;Memory Bank0, and so operate on the Ports
 ;themselves rather than the TRIS registers.

The STATUS register

This is one of the Special Function Registers, SFRs, discussed on page 67. It
contains a number of selection bits, and ‘flags’. A flag is a marker to show
that some event, or condition, has occurred. For example, the zero flag is
used to spot when the processor, in subtracting one number from another,
produces a result of zero.

The STATUS register has three main jobs:
 It allows us to select the memory bank used in the instructions that follow

using bit 5, the selection bit named as RP0 in the ‘include’ file on page 9.
 It shows the results of arithmetic and logic operations, using the zero

flag, the carry flag and the digit carry flag.
 It identifies the cause of a device reset, on the PD and TO flags..

Module ET5

Electronic Systems Applications.

16

The structure is shown below

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
IRP RP1 RP0 TO PD Z DC C

Key: IRP - Register Bank Select bit,
 (not used in PIC16F84 and so should contain logic 0.)

RP1, RP0 - Memory Bank Select bits. (Each bank contains 128 bytes of memory.)
 00 = Bank0 (00h – 7Fh);
 01 = Bank1 (80h – FFh);
 10 = Bank2 (100h – 17Fh);
 11 = Bank3 (180h – 1FFh);
 - RP1 is not used in PIC16F84 and should contain logic 0
TO - Time-out flag
PD - Power-down flag
Z - Zero flag (Logic 1 means that the result of the previous arithmetic or logic

operation was zero. Logic 0 means that the result was not zero.)
DC - Digit Carry / Borrow bit
C - Carry / Borrow bit

Exercise 2: (Solutions to exercises are given at the end of the topic.)

(a) Complete the following code in order to configure bits 0 to 3 of Port B
bits as input bits, and bits 4 to 7 as output bits.

 …… STATUS,……… ;the following instructions will refer to
 ;Memory Bank1, and so affect the TRIS
 ;registers rather than the Ports themselves
 movlw b’………………………’ ;0 = output bit, 1 = input bit
 …………… TRISB ;move the number from the working register
 ;to TRISB
 ……… STATUS, ……… ;the rest of the program will refer to
 ;Memory Bank0, and so operate on the Ports
 ;themselves rather than the TRIS registers.

(b) Write the section of code needed to:
 select Bank 1;
 configure the lsb and the msb of PORTA as input bits, and the other

three bits as output bits.
 select Bank 0.

Topic 5.2.1 – PIC microcontrollers

17

Interrupts

An interrupt is an event that forces the processor to jump from its current
activity to a specific point in the program, and then carry out a special
program called the Interrupt Service Routine (ISR). Interrupts are designed
to be special events whose arrival cannot be predicted precisely.

A non-PIC example: You are holding a party. You are not sure when the guests
will arrive. One option is to open the front door every couple of minutes to
see if anyone is there. This is very time-consuming, and means that you can
not really get on with other jobs. In programming, this approach is called
polling. Alternatively, you can wait for the doorbell to ring. Then you can stop
whatever you are doing to open the front door. This is like using an interrupt.

Interrupts allow the microcontroller to respond immediately to an external
event, such as a switch being pressed, or a sensor output changing state.
These are called hardware interrupts.

For example, an environmental control system for a building may have a
number of functions. It could:

 control air conditioning, heating and ventilation;
 detect fires in the building.

The first function requires that the control program poll a number of sensors
throughout the building periodically, and switch heating equipment and fans
on and off for various time intervals accordingly.

However, if a fire breaks out, an instant response is needed. If the control
program polled smoke detectors, then it may take time for the program to
get round to that particular sensor. It is much better to connect the smoke
sensors to the PIC IC so that they cause hardware interrupts when there is a
fire.

Module ET5

Electronic Systems Applications.

18

Hardware Interrupt Circuit

With the PIC 16F84, pin 6, called RB0/INT, must be momentarily pulled down
to logic 0 in order to cause a hardware interrupt. The circuit diagram shows
how this is achieved, using a switch.

16F84

6V

0V

10k

RB0/INT

Interrupt Service Routine

When an interrupt is detected, the processor completes the current
instruction and then jumps to a section of the program called the Interrupt
Service Routine (ISR).

This takes place in stages:
 The processor completes the instruction it is currently executing. Then it

stores the contents of the Program Counter on the stack. This is a
specialized area of memory. In the PIC16F84, it cannot be accessed
directly in the way that other memory locations can. Its job is to store
return addresses so that the processor knows where to resume the main
program after running either an interrupt service routine or a subroutine.

 The interrupt automatically causes the Program Counter to load the
address 004h, the Interrupt Vector Address. The CPU then executes the
instruction found there.

 You can write the ISR directly, starting at memory location 4.
 More commonly, you write a goto instruction in memory location 4,

redirecting the processor to the location of the ISR.
 Usually you mark the start of the ISR with a label such as inter.

Topic 5.2.1 – PIC microcontrollers

19

 Once the processor has completed the ISR, the return address is copied
from the stack into the Program Counter, and the main program continues
from where it left off when the interrupt was called.

These features can be seen in the ET3 project program template:

;The PIC16C84 vectors live at the bottom of memory (0000h-0007h)

org 0000h ;Reset vector for PIC16C84 is at 0000h
goto start ;Go to main program start

org 0004h ;Interrupt vector for PIC16C84 is at 0004h
goto inter ;Go to start of ISR

org 0008h ;first location available to programs

Notice that you goto the ISR – you don’t call the ISR. Using the call
instruction would store another return address on the stack. After
completing the ISR, the processor would then go back to location 0004h.

(Notice also the use of the Reset Vector Address, at memory location
0000h, with its goto command directing the processor to the start of the
main program, identified by the label start. In the same way, memory location
0008h is identified as the first location in which user programs should be
written.)

Exercise 3: (Solutions to exercises are given at the end of the topic.)

Modify the ET3 project program template so that:
 on power-up it directs the processor to the main program which begins at

the label launch.
 in the event of an interrupt, it directs the processor to an interrupt

service routine identified by the label problem1.

Module ET5

Electronic Systems Applications.

20

The INTCON register

There are four types of event that can trigger interrupts
 completion of writing data to the EEPROM memory;
 overflow of the TMR0 timer (changing from FFh to 00h);
 change of state of any of the pins RB4, RB5, RB6 or RB7;
 change of state of pin RB0/INT to logic 0.

The syllabus requires consideration of only the last one, a hardware interrupt
triggered by use of the RB0/INT pin on the PIC chip.

Interrupts are controlled by a Special Function Register, SFR, called
INTCON. It allows the user to make the CPU respond to any/all of the four
types of interrupt source, and also indicates which kind of interrupt has
taken place. Its structure is shown below.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
GIE EEIE TOIE INTE RBIE TOIF INTF RBIF

Key:
GIE - Global Interrupt Enable bit
 - logic 1 enables all interrupt sources, logic 0 disables them.
EEIE - EEPROM Write Complete Interrupt Enable bit
 - logic 1 enables, logic 0 disables, it;
TOIE - TMR0 Overflow Interrupt Enable bit
 - logic 1 enables, logic 0 disables, it;
INTE - External Interrupt Enable bit
 – enables interrupt on RB0/INT pin
 - logic 1 enables, logic 0 disables, it;
RBIE - RB Port Change Interrupt Enable bit
 – enables interrupt caused by change of state of pins RB4, RB5, RB6 or RB7
 - logic 1 enables, logic 0 disables, it;
TOIF - TMR0 Overflow Interrupt Flag
 - logic 1 - TMR0 counter output changed from FFh to 00h;
 - logic 0 – no overflow occurred.
INTF - External Interrupt Flag
 - logic 1 – RB0/INT pin pulled low, causing interrupt;
 - logic 0 – no interrupt occurred.
RBIF - RB Port Change Interrupt Flag
 - logic 1 – one of pins RB4, RB5, RB6 or RB7changed state;
 - logic 0 – no change of state occurred.

Topic 5.2.1 – PIC microcontrollers

21

 The Global Interrupt Enable bit (GIE) must be set to make the processor
respond to any type of interrupt. You can clear this bit if you don’t want
the processor to be interrupted in a particularly important part of the
program.

 Bits 3, 4, 5 and 6 are used to select which type(s) of interrupt are active.
Bit 4 is called the External Interrupt Enable (INTE) bit. It makes the
processor respond to interrupts triggered by the RB0/INT pin, (but only
if the GIE bit is also set.)

 The INTCON register also contains three flags, bits 0, 1 and 2, to show
the processor which type of interrupt has taken place. They operate even
if the interrupts themselves are not enabled.

 On power-up, the INTCON register contains the binary number 0000
000x, where x is unknown. This means that all interrupts are disabled by
default.

 When you write the ISR, you must clear bit 1, the INTF bit, which flags
up that an interrupt happened on the RB0/INT pin, so that the program
returns to normal operation. Otherwise the program will constantly go into
interrupt routine.

 The GIE bit is cleared automatically when an interrupt occurs. This means
that an ISR can’t be interrupted. On returning to the main program, the
GIE bit must be set once more to make the processor respond to further
interrupts. This is done automatically when you use the retfie command,
(return from interrupt and enable {GIE}). Using the return command does
not set the GIE bit.

The following code enables RB0/INT interrupts:
 movlw b’10010000’ ;enables GIE and INTE bits only
 movwf INTCON ;and clears all interrupt flags.
As the INTCON register sits in both Bank 0 and Bank 1, this code can be
written when the ports are configured (using Bank1) or in the main program
(using Bank 0.)

The following code clears the INTF bit:
 bcf INTCON,1 ;clears bit 1 (INTF) of the INTCON register.

Module ET5

Electronic Systems Applications.

22

Exercise 4: (Solutions to exercises are given at the end of the topic.)

(a) Write the section of code needed to:
 select Bank 1;
 configure bits 0,1 and 2 of PORTA, and bits 0, 1, 2, 3 and 4 of PORTB

as input bits, and all other bits as output bits.
 enable RB0/INT interrupts;
 select Bank 0.

(b) Write an Interrupt Service routine, identified by the label inter, that:

 clears the INTF bit;
 lights three LEDs connected to bits 5, 6 and 7 of PORTB, by

outputting logic 1 to these bits;
 calls the delay subroutine called fivesec;
 switches off the three LEDs connected to bits 5, 6 and 7 of PORTB;
 returns to the main program and reset the Global Interrupt Enable

bit at the same time.

Topic 5.2.1 – PIC microcontrollers

23

Protecting registers during interrupts

When an interrupt happens, the contents of the Program Counter are
automatically stored (on the Stack). Once the ISR is completed, the
processor retrieves the Program Counter contents from the Stack, and so can
continue with the main program from where it left off.

No other registers are protected in this way. This will cause problems when
the contents of a register are changed during the execution of the ISR.
When the ISR is completed, and the processor returns to the main program,
the changed contents of the register may cause undesirable effects.

Particularly vulnerable in this respect are the STATUS register and the
Working register. It is good practice to save the contents of both these
registers at the beginning of the ISR, and restore them at the end.

The syllabus requires that candidates can protect the Working register. (The
principle is exactly the same for protecting the STATUS register.)

To begin with, in the Register Usage section of the program, define the file
register which will be used to store the contents of the Working register.
This is done by using an equate statement. This tells the processor to convert
the label on the left of the equ instruction to the number on the right.

The code in this case is:

W_temp equ 10h ;the temporary storage place is now called
;W_temp, and is file register number 10h

At the beginning of the ISR, which is called inter in the following code, store
the contents of the Working register in W_temp:

inter movwf W_temp

At the end of the ISR, before returning to the main program, restore the
original contents of the Working register:

movf W_temp,0 ;move the file W_temp into the Working
 ;register (shown by the ‘ ,0 ’)

retfie ;return to the main program

Module ET5

Electronic Systems Applications.

24

Exercise 5: (Solutions to exercises are given at the end of the topic.)

(a) Write a statement associate the name Workstore with the GPR at
address 0Fh.

(b) Write an Interrupt Service routine that:
 is identified by the label panic;
 protects the Working register by transferring its contents to the

file register Workstore at the beginning of the ISR;
 clears the INTF bit;
 outputs logic 1 to four sirens connected to bits 4, 5, 6 and 7 of

PORTB;
 calls the subroutine called thirtysec;
 recovers the contents of the Working register;
 returns to the main program and reset the Global Interrupt Enable

bit at the same time.

Topic 5.2.1 – PIC microcontrollers

25

The OPTION Register:

Another feature of this interrupt source is that it can be set to occur either
on the rising or falling edge of the signal pulse from the RB0/INT pin. This
makes use bit 6 of another SFR, the OPTION register. Its structure is
shown below:

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
RBPU INTEDG T0CS T0SE PSA PS2 PS1 PS0

Key:
RBPU - PortB weak Pull-up Enable bit
INTEDG - Interrupt Edge Select bit
 - logic 1 - interrupt occurs on the rising edge of the RB0/INT pulse;
 - logic 0 - interrupt occurs on the falling edge of the RB0/INT pulse;
T0CS - TMR0 Clock Source Select bit
T0SE - TMR0 Source Edge Select bit
PSA - Pre-scaler Assignment bit
PS2, 1, 0 - Prescaler Rate Select bits

 On power-up, the OPTION register will contain the binary number 1111
1111. This means interrupts occur on the rising edge of the RB0/INT pulse
by default.

 In examination questions, candidates will not have to manipulate the
contents of the OPTION register.

For further information:

www.epemag.wimborne.co.uk
 – for occasional tutorials about PIC
www.mikroe.com/en/books/picbook/picbook.htm
 - for a free online PIC course that goes way beyond the requirements

of the syllabus
www.mstracey.btinternet.co.uk/index.htm
 - see tutorials 11 and 12
www.microchip.com
 - datasheets and full technical information on PIC chips.

Module ET5

Electronic Systems Applications.

26

Practice Exam Questions:

1. (a) Here is the pin out for a PIC 16F84 microcontroller.

16F
84

RA2
RA3
RA4

MCLR
VSS

RB0/INT
RB1
RB2
RB3

RA1
RA0
OSC1/CLK IN
OSC2/CLK OUT
VDD
RB7
RB6
RB5
RB4

 Draw the circuit diagram for a push switch, and any other components needed, connected to the

PIC chip so that, when the switch is pressed, the PIC microcontroller jumps to the interrupt service
routine, using the RB0/INT pin, which is active low. [1]

16F

84
6 V

0V

 (b) The INTCON register contains the enable bits for all interrupt sources.
 Complete the instructions below, to configure the INTCON register so that pressing the switch

triggers an interrupt, and so that all other interrupt sources are disabled. [1]

 movlw

 (c) The interrupt service routine is given below:

 inter movlw b’11110000’
 movwf PORTB
 call tensec ; call the ten second delay subroutine.
 retfie

 The interrupt vector address is 04. Write the instruction that must be included at that address to

jump to the interrupt service routine. [2]

 04

Topic 5.2.1 – PIC microcontrollers

27

 (d) Complete the instructions to configure all bits of PORTA, and the four lowest significant pins of

PORT B, as inputs and the four highest significant pins of PORTB as outputs, [3]
 bsf STATUS,RP0

 movlw b’...................‘

 movwf

 movlw b’...................‘

 movwf

 bcf STATUS,RP0

 (e) A PIC microcontroller is used to control the operation of a lift in a multi-storey car park. If a

passenger in the lift presses the Alarm switch, the interrupt service routine warns the lift operator
by flashing an LED on the control panel and sounding a buzzer. The LED flashes on and off at a
frequency of 2Hz until the operator presses a reset switch.

 (i) Explain why it is better to have the Alarm switch cause an interrupt rather than include a section of

code in the main program to poll the switch to see whether it has been pressed or not? [1]

 ………

 ………

 (ii) The Interrupt Service Routine:

 is labelled inter;
 protects the contents of the working register, using a file register called workstore;
 makes use of a 0.25 second time delay subroutine, called quart, which is already written;
 controls an LED attached to bit 0 of PORT B;
 controls a buzzer attached to bit 1 of PORTB;
 monitors the Alarm switch attached to PORTA bit 0.

 Write the code for the interrupt service routine. [5]
 You should make use of commands only from the following list. You will not need to use all of

these commands.

 bcf bsf btfss call clrf goto movf movlw movwf retfie

 inter
 loop

..

Module ET5

Electronic Systems Applications.

28

Solutions to Exercises:

Exercise 1:

(a) set bit 3 of PORTA bsf PORTA,3

(b) clear bit 1 of PORTB bcf PORTB,1

(c) clear the file register called testfile clrf testfile

(d) move the binary number 11011 into the working register
 movlw b’11011’

(e) move the contents of the working register into a file register called cost
 movwf cost

(f) move the contents of the file register called cost into the working
register movf cost,0

(g) branch unconditionally to a point in the program identified by the label
repeat goto repeat

(h) test bit 2 of the file register called input, and skip the next instruction if
the bit is set btfss input,2

Exercise 2:

(a) bsf STATUS,RP0 ;the following instructions will refer to
 ;Memory Bank1, and so affect the TRIS
 ;registers rather than the Ports themselves
 movlw b’00001111’ ;0 = output bit, 1 = input bit
 movwf TRISB ;move the number from the working register
 ;to TRISB
 bcf STATUS, RP0 ;the rest of the program will refer to
 ;Memory Bank0, and so operate on the Ports
 ;themselves rather than the TRIS registers.

Topic 5.2.1 – PIC microcontrollers

29

(b) bsf STATUS,RP0 ; select Bank 1;
 movlw b’10001’ ; configure the lsb and the msb of PORTA as
 movwf TRISA ; input bits, and the other three bits as
 ; output bits

 bcf STATUS, RP0 ; select Bank 0

Exercise 3:

org 0000h ; Reset vector for PIC16C84 is at 0000h
goto launch ; On power-up it directs the processor to the
 ; main program which begins at the label launch.

org 0004h ; Interrupt vector for PIC16C84 is at 0004h
goto problem1 ; In the event of an interrupt, it directs the
 ; processor to an interrupt service routine
 ; identified by the label problem1

org 0008h ;first location available to programs

Exercise 4:

(a) bsf STATUS,RP0 ; select Bank 1

 movlw b’00111’ ; configure bits 0,1 and 2 of PORTA as input
 ; bits, and all other bits as output bits.
 movwf TRISA

 movlw b’00011111’ ; configure bits 0, 1, 2, 3 and 4 of PORTB as
 ; input bits, and all other bits as output bits.
 movwf TRISB

 bcf STATUS, RP0 ;select Bank 0

Module ET5

Electronic Systems Applications.

30

(b)
inter bcf INTCON,1 ; clears the INTF bit.

 movlw b’11100000’ ; lights three LEDs connected to
 ; bits 5, 6 and 7 of PORTB,
 movwf PORTB ; by outputting logic 1 to these bits.
 call fivesec ; calls the delay subroutine called fivesec.
 clrf PORTB ; switches off the three LEDs connected to
 ; bits 5, 6 and 7 of PORTB.
 retfie ; returns to the main program and resets the
 ; Global Interrupt Enable bit at the same time.

Exercise 5:

 (a) Workstore equ 0Fh ; associates the name Workstore with the
 ; GPR at address 0Fh.

(b)
panic movwf Workstore ; protects the Working register by
 ; transferring its contents to file Workstore
 bcf INTCON,1 ; clears the INTF bit.

 movlw b’11110000’ ; outputs logic 1 to four sirens connected to
 movwf PORTB ; bits 4, 5, 6 and 7 of PORTB,.
 call thirtysec ; calls the subroutine called thirtysec.

movf Workstore,0; recovers the contents of Working register
 retfie ; returns to the main program and resets the
 ; Global Interrupt Enable bit at the same time.

Topic 5.2.1 – PIC microcontrollers

31

