| Candidate Name | Centre<br>Number | Candidate<br>Number |  |  |
|----------------|------------------|---------------------|--|--|
|                |                  | 0                   |  |  |



#### GCSE

MATHEMATICS
UNIT 2: CALCULATOR-ALLOWED
HIGHER TIER

2<sup>nd</sup> SPECIMEN PAPER SUMMER 2017

**1 HOUR 45 MINUTES** 

#### **ADDITIONAL MATERIALS**

A calculator will be required for this paper. A ruler, protractor and a pair of compasses may be required.

### **INSTRUCTIONS TO CANDIDATES**

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer **all** the questions in the spaces provided in this booklet.

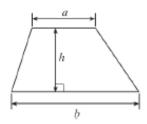
Take  $\pi$  as 3.14 or use the  $\pi$  button on your calculator.

# **INFORMATION FOR CANDIDATES**

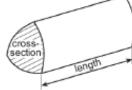
You should give details of your method of solution when appropriate.

Unless stated, diagrams are not drawn to scale.

Scale drawing solutions will not be acceptable where you are asked to calculate.


| The number of marks is given in brackets at the end of each | ì |
|-------------------------------------------------------------|---|
| question or part-question.                                  |   |

The assessment will take into account the quality of your linguistic and mathematical organisation, communication and accuracy in writing in question **9**.


| For Examiner's use only |                 |                 |  |
|-------------------------|-----------------|-----------------|--|
| Question                | Maximum<br>Mark | Mark<br>Awarded |  |
| 1.                      | 5               |                 |  |
| 2.                      | 2               |                 |  |
| 3.                      | 4               |                 |  |
| 4.                      | 6               |                 |  |
| 5.                      | 3               |                 |  |
| 6.                      | 6               |                 |  |
| 7.                      | 7               |                 |  |
| 8.                      | 5               |                 |  |
| 9.                      | 7               |                 |  |
| 10.                     | 5               |                 |  |
| 11.                     | 3               |                 |  |
| 12.                     | 7               |                 |  |
| 13.                     | 6               |                 |  |
| 14.                     | 7               |                 |  |
| 15.                     | 7               |                 |  |
| TOTAL                   | 80              |                 |  |

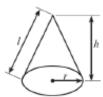
# Formula list - Higher tier

Area of a trapezium = 
$$\frac{1}{2}(a+b)h$$



Volume of a prism = area of cross section × length



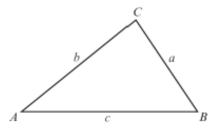

Volume of a sphere =  $\frac{4}{3}\pi r^3$ 

Surface area of a sphere =  $4\pi r^2$ 



Volume of a cone =  $\frac{1}{3}\pi r^2 h$ 

Curved surface area of a cone =  $\pi rl$ 




In any triangle ABC,

Sine rule: 
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Cosine rule: 
$$a^2 = b^2 + c^2 - 2bc \cos A$$

Area of triangle = 
$$\frac{1}{2}ab\sin C$$



## The Quadratic Equation

The solutions of 
$$ax^2 + bx + c = 0$$
 where  $a \ne 0$  are given by  $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ 

### Annual Equivalent Rate (AER)

AER, as a decimal, is calculated using the formula  $\left(1+\frac{i}{n}\right)^n-1$ , where i is the nominal interest rate per annum as a decimal and n is the number of compounding periods per annum.

1. Use a ruler and a pair of compasses to construct triangle ABC where AC = 10.5 cm,  $A\hat{C}B = 60^{\circ}$  and  $C\hat{A}B = 45^{\circ}$ . Line AC has been drawn for you.

[5]

A \_\_\_\_\_\_ C

2. Circle either TRUE or FALSE for each statement given below.

[2]

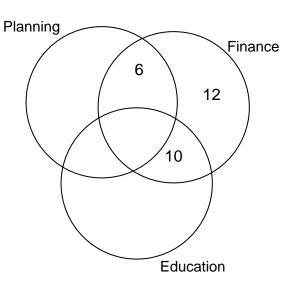
| STATEMENT                                                             |      |       |
|-----------------------------------------------------------------------|------|-------|
| Circles with diameters of equal length are congruent.                 | TRUE | FALSE |
| Regular pentagons whose perimeters are of equal length are congruent. |      | FALSE |
| Scalene triangles that have the same three angles are congruent.      | TRUE | FALSE |
| Rectangles with equal areas are congruent.                            | TRUE | FALSE |

| 3. | A solution to the equation $x^3 - 6x - 4 = 0$                                             |    |
|----|-------------------------------------------------------------------------------------------|----|
|    | lies between 2 and 3.                                                                     |    |
|    | Use the method of trial and improvement to find this solution correct to 1 decimal place. |    |
|    | You must show all your working.  [4                                                       | ŀ] |
|    |                                                                                           |    |
|    |                                                                                           |    |
|    |                                                                                           |    |
|    |                                                                                           | -  |
|    |                                                                                           |    |
|    |                                                                                           | -  |
|    |                                                                                           |    |
|    |                                                                                           |    |
|    |                                                                                           | -  |
|    |                                                                                           | -  |
|    |                                                                                           |    |

.....

.....

**4.** A total of 45 councillors make up the Planning, Finance and Education committees of a local council.


Some of the councillors sit on two of these committees.

No councillor sits on all three committees.

2 councillors sit on both the Planning Committee and the Education Committee. There are 18 councillors on the Education Committee.

[3]

(a) Complete the Venn diagram.



| Education                                                                                                                       |     |
|---------------------------------------------------------------------------------------------------------------------------------|-----|
|                                                                                                                                 |     |
|                                                                                                                                 |     |
|                                                                                                                                 |     |
| (b) How many councillors sit on both the Planning and Finance committees?                                                       | [1] |
| (c) One of these 45 councillors is chosen at random. What is the probability that this councillor is on the Planning Committee? | [2] |
|                                                                                                                                 |     |

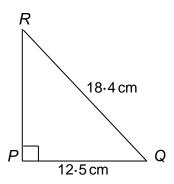



Diagram not drawn to scale

| Calculate the length of <i>PR</i> , giving your answer correct to 1 decimal place. | [3] |
|------------------------------------------------------------------------------------|-----|
|                                                                                    |     |
|                                                                                    |     |
|                                                                                    |     |
|                                                                                    |     |
|                                                                                    |     |
|                                                                                    |     |
|                                                                                    |     |
|                                                                                    |     |

| A bus company advertises two prices for a return journey between Aberystwyth and Cardiff: an adult price and the price for a child.                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A family of 2 adults and 3 children paid a total of £71.50 for their tickets.  A group consisting of 3 adults and 4 children paid a total of £101 for their tickets. |
| Use an algebraic method to calculate the total amount paid by a group of 4 adults ar 2 children.                                                                     |
| 2 children.                                                                                                                                                          |
|                                                                                                                                                                      |
|                                                                                                                                                                      |
|                                                                                                                                                                      |
|                                                                                                                                                                      |
|                                                                                                                                                                      |
|                                                                                                                                                                      |
|                                                                                                                                                                      |
|                                                                                                                                                                      |
|                                                                                                                                                                      |
|                                                                                                                                                                      |
|                                                                                                                                                                      |
|                                                                                                                                                                      |
|                                                                                                                                                                      |
|                                                                                                                                                                      |
|                                                                                                                                                                      |
|                                                                                                                                                                      |
|                                                                                                                                                                      |
|                                                                                                                                                                      |
|                                                                                                                                                                      |

6.

|   | (a) Factorise $x^2 - 4x - 21$ , and hence solve $x^2 - 4x - 21 = 0$ .  | [3] |
|---|------------------------------------------------------------------------|-----|
|   |                                                                        |     |
|   |                                                                        |     |
|   |                                                                        |     |
|   |                                                                        |     |
|   |                                                                        |     |
|   |                                                                        |     |
|   |                                                                        |     |
|   | (b) Solve the equation $\frac{x-7}{4} + \frac{2x+5}{8} = \frac{1}{2}.$ | [4] |
|   |                                                                        |     |
|   |                                                                        |     |
|   |                                                                        |     |
|   |                                                                        |     |
| • |                                                                        |     |
|   |                                                                        |     |
|   |                                                                        |     |
|   |                                                                        |     |
|   |                                                                        |     |
|   |                                                                        |     |
|   |                                                                        |     |
|   |                                                                        |     |
|   |                                                                        |     |
|   |                                                                        |     |
|   |                                                                        |     |

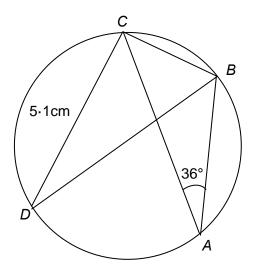



Diagram not drawn to scale

Points A, B, C and D lie on the circumference of a circle. BD is the diameter of the circle, CD = 5.1 cm and  $B\hat{A}C = 36^{\circ}$ .

| Calculate the length of the chord <i>BC.</i> You must give reasons as part of your solution. |     |  |  |  |
|----------------------------------------------------------------------------------------------|-----|--|--|--|
|                                                                                              | [5] |  |  |  |
|                                                                                              |     |  |  |  |
|                                                                                              |     |  |  |  |
|                                                                                              |     |  |  |  |
|                                                                                              |     |  |  |  |
|                                                                                              |     |  |  |  |
|                                                                                              |     |  |  |  |
|                                                                                              |     |  |  |  |
|                                                                                              |     |  |  |  |
|                                                                                              |     |  |  |  |
|                                                                                              |     |  |  |  |
|                                                                                              |     |  |  |  |
|                                                                                              |     |  |  |  |
|                                                                                              |     |  |  |  |

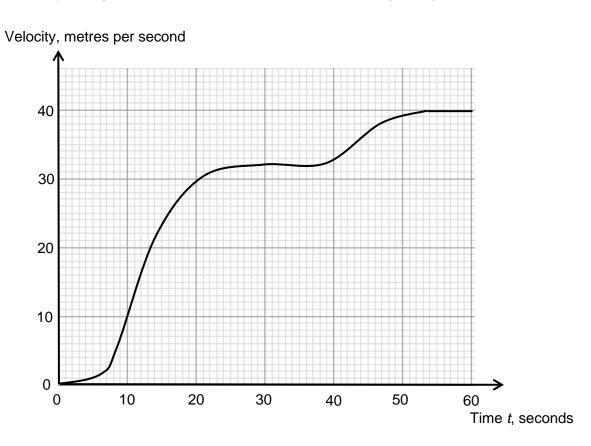
**9.** You will be assessed on the quality of your organisation, communication and accuracy in writing in this question.

Gerallt ran the  $400\,\mathrm{m}$  race in an Urdd sports event. This distance was measured correct to the nearest  $0.5\,\mathrm{m}$ .

Calculate Gerallt's least possible average speed and greatest possible average speed.

The time it took him was 74 seconds, measured correct to the nearest second.

| Give your answers to 3 significant figures. You must show your working. | •           |
|-------------------------------------------------------------------------|-------------|
|                                                                         | [5 + OCW 2] |
|                                                                         |             |
|                                                                         |             |
|                                                                         |             |
|                                                                         |             |
|                                                                         |             |
|                                                                         |             |
|                                                                         |             |
|                                                                         |             |
|                                                                         |             |
|                                                                         |             |


| <b>10.</b> (a   | ) Express $0\cdot 4\dot{9}\dot{1}$ as a fraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n.              |                               |              | [2] |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------------------------|--------------|-----|
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                               |              |     |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                               |              |     |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                               |              |     |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                               |              | ·   |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                               |              |     |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                               |              |     |
|                 | the following statement true on the following statement true on the following statement true of the following statement true or the following statement true o |                 | he correct answer.            |              |     |
| The e           | valuation of $a^{\frac{2}{3}}$ will always be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | an integer prov | vided $a$ is a multiple of 3. |              |     |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | true / fals     | se                            |              | [1] |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                               |              |     |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                               |              |     |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                               |              |     |
| (c) Cir         | cle your answer in each of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | e following.    |                               |              |     |
|                 | (i) $\sqrt{200}$ simplifies to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |                               |              |     |
| 20              | $10\sqrt{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $20\sqrt{10}$   | $100\sqrt{2}$                 | $2\sqrt{10}$ | [1] |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                               |              |     |
|                 | (ii) $\sqrt{5} + \sqrt{45}$ simplifies to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |                               |              |     |
| √ <del>50</del> | $\sqrt{225}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $4\sqrt{5}$     | $10\sqrt{5}$                  | $4\sqrt{10}$ | [1] |

**11.** The table below shows the number of people employed by a graphic design company.

|           | Male | Female |
|-----------|------|--------|
| Full-time | 125  | 30     |
| Part-time | 18   | 87     |

| The company plans to take a stratified sample of 40 members of staff, to find out their views on how the company could be improved. |
|-------------------------------------------------------------------------------------------------------------------------------------|
| Calculate the number of staff from each of the four categories that should be in the sample. [3]                                    |
|                                                                                                                                     |
|                                                                                                                                     |
|                                                                                                                                     |
|                                                                                                                                     |
|                                                                                                                                     |
|                                                                                                                                     |
|                                                                                                                                     |
|                                                                                                                                     |
|                                                                                                                                     |
|                                                                                                                                     |
|                                                                                                                                     |

**12.** The velocity-time graph shows the first 60 seconds of a train's journey from a station.



| a) Calculate an estimate of the acceleration of the train when $t = 20$ seconds. tate the units of your answer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--|--|
| , and the second | [4] |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |  |  |

| (b) Use the trapezium rule with ordinates $t = 0$ , $t = 10$ , $t = 20$ , $t = 30$ , $t = 40$ , $t = 50$ and $t = 60$ to calculate an estimate of the distance travelled by the train in the first 60 seconds of its journey. |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [3]                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                               |

13. A right-circular cone of vertical height  $10\,\mathrm{cm}$  and base radius  $5\,\mathrm{cm}$  is attached to a cylinder of the same radius and height  $8\,\mathrm{cm}$ .

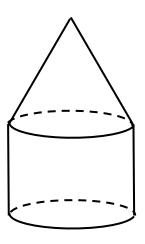



Diagram not drawn to scale

| Calculate the total surface area of the shape. | [6]                                     |
|------------------------------------------------|-----------------------------------------|
|                                                |                                         |
|                                                |                                         |
|                                                |                                         |
|                                                |                                         |
|                                                |                                         |
|                                                |                                         |
|                                                |                                         |
|                                                |                                         |
|                                                | . <b></b>                               |
|                                                |                                         |
|                                                |                                         |
|                                                | ·                                       |
|                                                | · • • • • • • • • • • • • • • • • • • • |
|                                                |                                         |
|                                                |                                         |
|                                                |                                         |

| 14.                                      |                                                                              |             |
|------------------------------------------|------------------------------------------------------------------------------|-------------|
| (a) Show that the equation $\frac{1}{2}$ | $\frac{3}{x-1} - \frac{5}{x+4} = 6$ can be written as $12x^2 + 49x - 41 = 6$ | = 0.<br>[4] |
|                                          |                                                                              |             |
|                                          |                                                                              |             |
|                                          |                                                                              |             |
|                                          |                                                                              |             |
|                                          |                                                                              |             |
|                                          |                                                                              |             |
|                                          |                                                                              |             |
|                                          |                                                                              |             |
| (b) Hence solve the equation             | $\frac{3}{2x-1} - \frac{5}{x+4} = 6.$                                        |             |
|                                          |                                                                              |             |
| Give your answers correct to 2           |                                                                              | [3]         |
| Give your answers correct to 2           |                                                                              |             |
| Give your answers correct to 2           | 2 decimal places.                                                            |             |
| Give your answers correct to 2           | 2 decimal places.                                                            |             |
|                                          | 2 decimal places.                                                            |             |

**15.** In the parallelogram *ABCD*, AB = 12.7 cm and  $D\hat{A}B = 132^{\circ}$ .

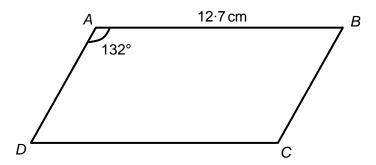



Diagram not drawn to scale

| Calculate the length of the diagonal <i>DB</i> . | [7]                                   |
|--------------------------------------------------|---------------------------------------|
|                                                  | · · · · · · · · · · · · · · · · · · · |
|                                                  |                                       |
|                                                  |                                       |
|                                                  |                                       |
|                                                  |                                       |
|                                                  |                                       |
|                                                  |                                       |
|                                                  |                                       |
|                                                  |                                       |
|                                                  |                                       |
|                                                  |                                       |
|                                                  |                                       |
|                                                  |                                       |
|                                                  |                                       |
|                                                  |                                       |
|                                                  |                                       |
|                                                  |                                       |