

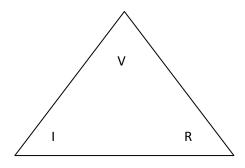
APPLYING OHM'S LAW IN ELECTRONIC CIRCUITS

In some instances a unit might be rather large and in others rather small. This tends to introduce a large number of '0's into calculations. The amp is a large unit of current, and in most electronic circuits we are dealing with currents which are more conveniently expressed in milli-amps (mA).

1mA = 0.001A

The ohm is a rather small unit of resistance. Resistors used in electronic circuits have values which are often greater than a thousand ohms. In such cases it is more convenient to express their values in kilohms (k Ω)

When dealing with electronic circuits we often find that using volts, milliamps and kilohms in Ohm's law makes calculations much simpler.


V (volts) / I (mA) = R (kilohms)

 $1 k\Omega = 1000\Omega$

 $V = I \times R$

$$I = \frac{V}{R}$$

$$R = \frac{V}{I}$$

