Vectors and geometric proofs Answers

GCSE Mathematics

HG25

1. In the parallelogram ABCD $\overrightarrow{AB} = x$ and $\overrightarrow{AC} = y$.

M is the midpoint of CD and P is the midpoint of BD. Find in terms of \mathbf{x} and \mathbf{y} :

a)
$$\overrightarrow{CD}$$
 Answer: $\overrightarrow{CD} = \overrightarrow{AB}$

$$\overrightarrow{CD} = x$$

b)
$$\overrightarrow{BD}$$
 Answer: $\overrightarrow{DB} = \overrightarrow{CA}$

$$\overrightarrow{DB} = y$$
 so $\overrightarrow{BD} = -y$

c)
$$\overrightarrow{CB}$$
 Answer: $\overrightarrow{CB} = \overrightarrow{CA} + \overrightarrow{AB}$

$$= y + x$$

d)
$$\overrightarrow{MP}$$
 Answer: $\overrightarrow{MP} = \overrightarrow{MD} + DP$

$$\Rightarrow = \underbrace{1}_{2} \overrightarrow{CD} + \underbrace{1}_{2} \overrightarrow{DB}$$

$$=\frac{x}{2}+\frac{y}{2}$$

e) What can you conclude about CB and MP?

Answer: As $\overrightarrow{MP} = 1 \overrightarrow{CB}$ then the line MP is parallel to CB.

Vectors and geometric proofs Answers GCSE Mathematics

HG25

2. In the diagram $\overrightarrow{OA} = -x + 2y$ and $\overrightarrow{OB} = 3x + 4y$.

(a) Find \overrightarrow{AB} in terms of \mathbf{x} and \mathbf{y}

Answer:
$$\overrightarrow{AB} = \overrightarrow{AO} + \overrightarrow{OB}$$

= $x - 2y + 3x + 4y$
= $4x + 2y$

(b) Knowing that $\overrightarrow{BC} = 3x - y$ find \overrightarrow{OC} in terms of x and y.

Answer:
$$\overrightarrow{OC} = \overrightarrow{OB} + \overrightarrow{BC}$$

= $3x + 4y + 3x - y$
= $6x + 3y$

(c) What does this tell us about the quadrilateral OABC? Explain your answer.

Answer: $\overrightarrow{AB} = 2 \overrightarrow{OC}$ therefore AB and OC must be parallel

OA and BC not parallel as no multiplier, therefore OABC is a trapezium.

Vectors and geometric proofs Answers

GCSE Mathematics

HG25

3. In the following diagram

$$\overrightarrow{AB} = 2a$$
 $\overrightarrow{BC} = b$

(a) Find \overrightarrow{AC} in terms of **a** and **b**.

Answer:
$$\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC}$$

= $2a + b$

(b) Knowing that the point M is the midpoint of AD and $\overrightarrow{AM} = \mathbf{a} + \mathbf{b}$, find \overrightarrow{CD} in terms of \mathbf{a} and \mathbf{b} .

Answer: If
$$\overrightarrow{AM} = a + b$$
 then $\overrightarrow{AD} = 2a + 2b$

$$\overrightarrow{CD} = \overrightarrow{CA} + \overrightarrow{AD}$$

$$= -2a - b + 2a + 2b$$

$$= b$$

(c) Knowing that the point N is the midpoint of AE and $\overrightarrow{AN} = \mathbf{a} + \sqrt[3]{_2}\mathbf{b}$, find \overrightarrow{DE} in terms of \mathbf{a} and \mathbf{b} .

Vectors and geometric proofs Answers GCSE Mathematics HG25

(d) What conclusion can we draw about the points B,C,D and E?

Answer: $\overrightarrow{BC} = \overrightarrow{CD} = \overrightarrow{DE}$

 \overrightarrow{BD} = 2b and \overrightarrow{BE} = 3b

 $\overrightarrow{BD} = 2\overrightarrow{BC}$ and $\overrightarrow{BE} = 3\overrightarrow{BC}$

Points BCDE must lie on a straight line